Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Experimental & Molecular Medicine ; : e433-2018.
Article in English | WPRIM | ID: wpr-739492

ABSTRACT

Although radiation therapy is a cornerstone of modern management of malignancies, various side effects are inevitably linked to abdominal and pelvic cancer after radiotherapy. Radiation-mediated gastrointestinal (GI) toxicity impairs the life quality of cancer survivors and even shortens their lifespan. Hydrogen has been shown to protect against tissue injuries caused by oxidative stress and excessive inflammation, but its effect on radiation-induced intestinal injury was previously unknown. In the present study, we found that oral gavage with hydrogen-water increased the survival rate and body weight of mice exposed to total abdominal irradiation (TAI); oral gavage with hydrogen-water was also associated with an improvement in GI tract function and the epithelial integrity of the small intestine. Mechanistically, microarray analysis revealed that hydrogen-water administration upregulated miR-1968-5p levels, thus resulting in parallel downregulation of MyD88 expression in the small intestine after TAI exposure. Additionally, high-throughput sequencing showed that hydrogen-water oral gavage resulted in retention of the TAI-shifted intestinal bacterial composition in mice. Collectively, our findings suggested that hydrogen-water might be used as a potential therapeutic to alleviate intestinal injury induced by radiotherapy for abdominal and pelvic cancer in preclinical settings.


Subject(s)
Animals , Humans , Mice , Body Weight , Down-Regulation , Gastrointestinal Microbiome , Gastrointestinal Tract , Hydrogen , Inflammation , Intestine, Small , Microarray Analysis , Oxidative Stress , Pelvic Neoplasms , Quality of Life , Radiotherapy , Survival Rate , Survivors
2.
Acta Academiae Medicinae Sinicae ; (6): 496-500, 2015.
Article in Chinese | WPRIM | ID: wpr-257605

ABSTRACT

<p><b>OBJECTIVE</b>To evaluate the protective effect of S-isopentenyl-L-cysteine,a new cysteine derivative,on DNA damage induced by radiation by using acute radiation injury animal models.</p><p><b>METHODS</b>Forty ICR mice were randomly divided into five groups:the control group,1.0Gy gamma irradiation group,1.0Gy gamma irradiation combined with S-isopentenyl-L-cysteine group,7.2Gy gamma irradiation group,and 7.2Gy gamma irradiation combined with S-isopentenyl-L-cysteine group,with 8 mice in each group.The comet assay and bone marrow polychromatic micronucleus experiments were performed to evaluate the double-strand DNA breaks in ICR mice exposed to 1.0 and 7.2Gy gamma-ray, respectively.</p><p><b>RESULTS</b>The tail DNA percentage,tail length,tail moment,and olive tail moment of peripheral blood lymphocytes in 7.2Gy gamma irradiation group were significantly higher than that of the control group (P<0.01).And it was also observed that above experimental indexes of 7.2Gy gamma irradiation combined with S-isopentenyl-L-cysteine group was significantly less than that of 7.2Gy gamma irradiation group (P<0.05). In addition,the micronucleus rate of 1.0Gy gamma irradiation group and 7.2Gy gamma irradiation group were both significantly higher than in the control group (P<0.01). In addition,in mice given S-isopentenyl-L-cysteine before irradiation,the micronucleus rate of ICR mice exposed to 1.0 and 7.2Gy gamma-ray decreased from (39.5000 ± 3.3141)‰ to (28.1667±4.1345)‰ (P=0.033) and from (76.5000 ± 4.6242)‰ to (22.8333 ± 3.6553)‰(P=0.000),respectively. The bone marrow polychromatic micronucleus experiment indicated that the value of polychromatic erythrocyte (PCE)/normochromatic erythrocyte(NCE) of ICR mice exposed to 1.0 and 7.2Gy gamma-ray was less than the control group(P<0.05). Meanwhile,after irradiating by certain dose,the value of PCE/NCE in mice given S-isopentenyl-L-cysteine before irradiation was significantly higher than the corresponding groups (P<0.05).</p><p><b>CONCLUSION</b>S-isopentenyl-L-cysteine has a good protective effect against DNA damage induced by radiation.</p>


Subject(s)
Animals , Mice , Bone Marrow , Cysteine , DNA Damage , Disease Models, Animal , Gamma Rays , Mice, Inbred ICR , Radiation Injuries , Radiation-Protective Agents
SELECTION OF CITATIONS
SEARCH DETAIL